Skip to main content

RD Sharma Solutions For Class 7 Chapter 5 – Operations On Rational Numbers

 

RD Sharma Solutions For Class 7 Chapter 5 – Operations On Rational Numbers

Exercise 5.1 Page No: 5.4

1. Add the following rational numbers:

(i) (-5/7) and (3/7)

(ii) (-15/4) and (7/4)

(iii) (-8/11) and (-4/11)

(iv) (6/13) and (-9/13)

Solution:

(i) Given (-5/7) and (3/7)

= (-5/7) + (3/7)

Here denominators are same so add the numerator

= ((-5+3)/7)

= (-2/7)

(ii) Given (-15/4) and (7/4)

= (-15/4) + (7/4)

Here denominators are same so add the numerator

= ((-15 + 7)/4)

= (-8/4)

On simplifying

= -2

(iii) Given (-8/11) and (-4/11)

= (-8/11) + (-4/11)

Here denominators are same so add the numerator

= (-8 + (-4))/11

= (-12/11)

(iv) Given (6/13) and (-9/13)

= (6/13) + (-9/13)

Here denominators are same so add the numerator

= (6 + (-9))/13

= (-3/13)

2. Add the following rational numbers:

(i) (3/4) and (-3/5)

(ii) -3 and (3/5)

(iii) (-7/27) and (11/18)

(iv) (31/-4) and (-5/8)

Solution:

(i) Given (3/4) and (-3/5)

If p/q and r/s are two rational numbers such that q and s do not have a common factor other than one, then

(p/q) + (r/s) = (p × s + r × q)/ (q × s)

(3/4) + (-3/5) = (3 × 5 + (-3) × 4)/ (4 × 5)

= (15 – 12)/ 20

= (3/20)

(ii) Given -3 and (3/5)

If p/q and r/s are two rational numbers such that q and s do not have a common factor other than one, then

(p/q) + (r/s) = (p × s + r × q)/ (q × s)

(-3/1) + (3/5) = (-3 × 5 + 3 × 1)/ (1 × 5)

= (-15 + 3)/ 5

= (-12/5)

(iii) Given (-7/27) and (11/18)

LCM of 27 and 18 is 54

(-7/27) = (-7/27) × (2/2) = (-14/54)

(11/18) = (11/18) × (3/3) = (33/54)

(-7/27) + (11/18) = (-14 + 33)/54

= (19/54)

(iv) Given (31/-4) and (-5/8)

LCM of -4 and 8 is 8

(31/-4) = (31/-4) × (2/2) = (62/-8)

(31/-4) + (-5/8) = (-62 – 5)/8

= (-67/8)

3. Simplify:

(i) (8/9) + (-11/6)

(ii) (-5/16) + (7/24)

(iii) (1/-12) + (2/-15)

(iv) (-8/19) + (-4/57)

Solution:

(i) Given (8/9) + (-11/6)

The LCM of 9 and 6 is 18

(8/9) = (8/9) × (2/2) = (16/18)

(11/6) = (11/6) × (3/3) = (33/18)

= (16 – 33)/18

= (-17/18)

(ii) Given (-5/16) + (7/24)

The LCM of 16 and 24 is 48

Now (-5/16) = (-5/16) × (3/3) = (-15/48)

Consider (7/24) = (7/24) × (2/2) = (14/48)

(-5/16) + (7/24) = (-5/48) + (14/48)

= (14 – 15) /48

= (-1/48)

(iii) Given (1/-12) + (2/-15)

The LCM of 12 and 15 is 60

Consider (-1/12) = (-1/12) × (5/5) = (-5/60)

Now (2/-15) = (-2/15) × (4/4) = (-8/60)

(1/-12) + (2/-15) = (-5/60) + (-8/60)

= (-5 – 8)/60

= (-13/60)

(iv) Given (-8/19) + (-4/57)

The LCM of 19 and 57 is 57

Consider (-8/57) = (-8/57) × (3/3) = (-24/57)

(-8/19) + (-4/57) = (-24/57) + (-4/57)

= (-24 – 4)/57

= (-28/57)

4. Add and express the sum as mixed fraction:

(i) (-12/5) + (43/10)

(ii) (24/7) + (-11/4)

(iii) (-31/6) + (-27/8)

Solution:

(i) Given (-12/5) + (43/10)

The LCM of 5 and 10 is 10

Consider (-12/5) = (-12/5) × (2/2) = (-24/10)

(-12/5) + (43/10) = (-24/10) + (43/10)

= (-24 + 43)/10

= (19/10)

Now converting it into mixed fraction

= 1 (9/10)

(ii) Given (24/7) + (-11/4)

The LCM of 7 and 4 is 28

Consider (24/7) = (24/7) × (4/4) = (96/28)

Again (-11/4) = (-11/4) × (7/7) = (-77/28)

(24/7) + (-11/4) = (96/28) + (-77/28)

= (96 – 77)/28

= (19/28)

(iii) Given (-31/6) + (-27/8)

The LCM of 6 and 8 is 24

Consider (-31/6) = (-31/6) × (4/4) = (-124/24)

Again (-27/8) = (-27/8) × (3/3) = (-81/24)

(-31/6) + (-27/8) = (-124/24) + (-81/24)

= (-124 – 81)/24

= (-205/24)

Now converting it into mixed fraction

= -8 (13/24)


Exercise 5.2 Page No: 5.7

1. Subtract the first rational number from the second in each of the following:

(i) (3/8), (5/8)

(ii) (-7/9), (4/9)

(iii) (-2/11), (-9/11)

(iv) (11/13), (-4/13)

Solution:

(i) Given (3/8), (5/8)

(5/8) – (3/8) = (5 – 3)/8

= (2/8)

= (1/4)

(ii) Given (-7/9), (4/9)

(4/9) – (-7/9) = (4/9) + (7/9)

= (4 + 7)/9

= (11/9)

(iii) Given (-2/11), (-9/11)

(-9/11) – (-2/11) = (-9/11) + (2/11)

= (-9 + 2)/ 11

= (-7/11)

(iv) Given (11/13), (-4/13)

(-4/13) – (11/13) = (-4 – 11)/13

= (-15/13)

2. Evaluate each of the following:

(i) (2/3) – (3/5)

(ii) (-4/7) – (2/-3)

(iii) (4/7) – (-5/-7)

(iv) -2 – (5/9)

Solution:

(i) Given (2/3) – (3/5)

The LCM of 3 and 5 is 15

Consider (2/3) = (2/3) × (5/5) = (10/15)

Now again (3/5) = (3/5) × (3/3) = (9/15)

(2/3) – (3/5) = (10/15) – (9/15)

= (1/15)

(ii) Given (-4/7) – (2/-3)

The LCM of 7 and 3 is 21

Consider (-4/7) = (-4/7) × (3/3) = (-12/21)

Again (2/-3) = (-2/3) × (7/7) = (-14/21)

(-4/7) – (2/-3) = (-12/21) – (-14/21)

= (-12 + 14)/21

= (2/21)

(iii) Given (4/7) – (-5/-7)

(4/7) – (5/7) = (4 -5)/7

= (-1/7)

(iv) Given -2 – (5/9)

Consider (-2/1) = (-2/1) × (9/9) = (-18/9)

-2 – (5/9) = (-18/9) – (5/9)

= (-18 -5)/9

= (-23/9)

3. The sum of the two numbers is (5/9). If one of the numbers is (1/3), find the other.

Solution:

Given sum of two numbers is (5/9)

And one them is (1/3)

Let the unknown number be x

x + (1/3) = (5/9)

x = (5/9) – (1/3)

LCM of 3 and 9 is 9

Consider (1/3) = (1/3) × (3/3) = (3/9)

On substituting we get

x = (5/9) – (3/9)

x = (5 – 3)/9

x = (2/9)

4. The sum of two numbers is (-1/3). If one of the numbers is (-12/3), find the other.

Solution:

Given sum of two numbers = (-1/3)

One of them is (-12/3)

Let the required number be x

x + (-12/3) = (-1/3)

x = (-1/3) – (-12/3)

x = (-1/3) + (12/3)

x = (-1 + 12)/3

x = (11/3)

5. The sum of two numbers is (– 4/3). If one of the numbers is -5, find the other.

Solution:

Given sum of two numbers = (-4/3)

One of them is -5

Let the required number be x

x + (-5) = (-4/3)

LCM of 1 and 3 is 3

(-5/1) = (-5/1) × (3/3) = (-15/3)

On substituting

x + (-15/3) = (-4/3)

x = (-4/3) – (-15/3)

x = (-4/3) + (15/3)

x = (-4 + 15)/3

x = (11/3)

6. The sum of two rational numbers is – 8. If one of the numbers is (-15/7), find the other.

Solution:

Given sum of two numbers is -8

One of them is (-15/7)

Let the required number be x

x + (-15/7) = -8

The LCM of 7 and 1 is 7

Consider (-8/1) = (-8/1) × (7/7) = (-56/7)

On substituting

x + (-15/7) = (-56/7)

x = (-56/7) – (-15/7)

x = (-56/7) + (15/7)

x = (-56 + 15)/7

x = (-41/7)

7. What should be added to (-7/8) so as to get (5/9)?

Solution:

Given (-7/8)

Let the required number be x

x + (-7/8) = (5/9)

The LCM of 8 and 9 is 72

x = (5/9) – (-7/8)

x = (5/9) + (7/8)

Consider (5/9) = (5/9) × (8/8) = (40/72)

Again (7/8) = (7/8) × (9/8) = (63/72)

On substituting

x = (40/72) + (63/72)

x = (40 + 63)/72

x = (103/72)

8. What number should be added to (-5/11) so as to get (26/33)?

Solution:

Given (-5/11)

Let the required number be x

x + (-5/11) = (26/33)

x = (26/33) – (-5/11)

x = (26/33) + (5/11)

Consider (5/11) = (5/11) × (3/3) = (15/33)

On substituting

x = (26/33) + (15/33)

x = (41/33)

9. What number should be added to (-5/7) to get (-2/3)?

Solution:

Given (-5/7)

Let the required number be x

x + (-5/7) = (-2/3)

x = (-2/3) – (-5/7)

x = (-2/3) + (5/7)

LCM of 3 and 7 is 21

Consider (-2/3) = (-2/3) × (7/7) = (-14/21)

Again (5/7) = (5/7) × (3/3) = (15/21)

On substituting

x = (-14/21) + (15/21)

x = (-14 + 15)/21

x = (1/21)

10. What number should be subtracted from (-5/3) to get (5/6)?

Solution:

Given (-5/3)

Let the required number be x

(-5/3) – x = (5/6)

– x = (5/6) – (-5/3)

– x = (5/6) + (5/3)

Consider (5/3) = (5/3) × (2/2) = (10/6)

On substituting

– x = (5/6) + (10/6)

– x = (15/6)

x = (-15/6)

11. What number should be subtracted from (3/7) to get (5/4)?

Solution:

Given (3/7)

Let the required number be x

(3/7) – x = (5/4)

– x = (5/4) – (3/7)

The LCM of 4 and 7 is 28

Consider (5/4) = (5/4) × (7/7) = (35/28)

Again (3/7) = (3/7) × (4/4) = (12/28)

On substituting

-x = (35/28) – (12/28)

– x = (35 -12)/28

– x = (23/28)

x = (-23/28)

12. What should be added to ((2/3) + (3/5)) to get (-2/15)?

Solution:

Given ((2/3) + (3/5))

Let the required number be x

((2/3) + (3/5)) + x = (-2/15)

Consider (2/3) = (2/3) × (5/5) = (10/15)

Again (3/5) = (3/5) × (3/3) = (9/15)

On substituting

((10/15) + (9/15)) + x = (-2/15)

x = (-2/15) – ((10/15) + (9/15))

x = (-2/15) – (19/15)

x = (-2 -19)/15

x = (-21/15)

x = (- 7/5)

13. What should be added to ((1/2) + (1/3) + (1/5)) to get 3?

Solution:

Given ((1/2) + (1/3) + (1/5))

Let the required number be x

((1/2) + (1/3) + (1/5)) + x = 3

x = 3 – ((1/2) + (1/3) + (1/5))

LCM of 2, 3 and 5 is 30

Consider (1/2) = (1/2) × (15/15) = (15/30)

(1/3) = (1/3) × (10/10) = (10/30)

(1/5) = (1/5) × (6/6) = (6/30)

On substituting

x = 3 – ((15/30) + (10/30) + (6/30))

x = 3 – (31/30)

(3/1) = (3/1) × (30/30) = (90/30)

x = (90/30) – (31/30)

x = (90 – 31)/30

x = (59/30)

14. What should be subtracted from ((3/4) – (2/3)) to get (-1/6)?

Solution:

Given ((3/4) – (2/3))

Let the required number be x

((3/4) – (2/3)) – x = (-1/6)

– x = (-1/6) – ((3/4) – (2/3))

Consider (3/4) = (3/4) × (3/3) = (9/12)

(2/3) = (2/3) × (4/4) = (8/12)

On substituting

– x = (-1/6) – ((9/12) – ((8/12))

– x = (-1/6) – (1/12)

(1/6) = (1/6) × (2/2) = (2/12)

– x = (-2/12) – (1/12)

– x = (-2 – 1)/12

– x = (-3/12)

x = (3/12)

x = (1/4)

15. Simplify:

(i) (-3/2) + (5/4) – (7/4)

(ii) (5/3) – (7/6) + (-2/3)

(iii) (5/4) – (7/6) – (-2/3)

(iv) (-2/5) – (-3/10) – (-4/7)

Solution:

(i) Given (-3/2) + (5/4) – (7/4)

Consider (-3/2) = (-3/2) × (2/2) = (-6/4)

On substituting

(-3/2) + (5/4) – (7/4) = (-6/4) + (5/4) – (7/4)

= (-6 + 5 – 7)/4

= (-13 + 5)/4

= (-8/4)

= -2

(ii) Given (5/3) – (7/6) + (-2/3)

Consider (5/3) = (5/3) × (2/2) = (10/6)

(-2/3) = (-2/3) × (2/2) = (-4/6)

(5/3) – (7/6) + (-2/3) = (10/6) – (7/6) – (4/6)

= (10 – 7 – 4)/6

= (10 – 11)/6

= (-1/6)

(iii) Given (5/4) – (7/6) – (-2/3)

The LCM of 4, 6 and 3 is 12

Consider (5/4) = (5/4) × (3/3) = (15/12)

(7/6) = (7/6) × (2/2) = (14/12)

(-2/3) = (-2/3) × (4/4) = (-8/12)

(5/4) – (7/6) – (-2/3) = (15/12) – (14/12) + (8/12)

= (15 – 14 + 8)/12

= (9/12)

= (3/4)

(iv) Given (-2/5) – (-3/10) – (-4/7)

The LCM of 5, 10 and 7 is 70

Consider (-2/5) = (-2/5) × (14/14) = (-28/70)

(-3/10) = (-3/10) × (7/7) = (-21/70)

(-4/7) = (-4/7) × (10/10) = (-40/70)

On substituting

(-2/5) – (-3/10) – (-4/7) = (-28/70) + (21/70) + (40/70)

= (-28 + 21 + 40)/70

= (33/70)

16. Fill in the blanks:

(i) (-4/13) – (-3/26) = …..

(ii) (-9/14) + ….. = -1

(iii) (-7/9) + ….. = 3

(iv) ….. + (15/23) = 4

Solution:

(i) (-5/26)

Explanation:

Consider (-4/13) – (-3/26)

(-4/13) = (-4/13) × (2/2) = (-8/26)

(-4/13) – (-3/26) = (-8/26) – (-3/26)

= (-5/26)

(ii) (-5/14)

Explanation:

Given (-9/14) + ….. = -1

(-9/14) + 1 = ….

(-9/14) + (14/14) = (5/14)

(-9/14) + (-5/14) = -1

(iii) (34/9)

Explanation:

Given (-7/9) + ….. = 3

(-7/9) + x = 3

x = 3 + (7/9)

(3/1) = (3/1) × (9/9) = (27/9)

x = (27/9) + (7/9) = (34/9)

(iv) (77/23)

Explanation:

Given ….. + (15/23) = 4

x + (15/23) = 4

x = 4 – (15/23)

(4/1) = (4/1) × (23/23) = (92/23)

x = (92/23) – (15/23)

= (77/23)


Exercise 5.3 Page No: 5.10

1. Multiply:

(i) (7/11) by (5/4)

(ii) (5/7) by (-3/4)

(iii) (-2/9) by (5/11)

(iv) (-3/13) by (-5/-4)

Solution:

(i) Given (7/11) by (5/4)

(7/11) × (5/4) = (35/44)

(ii) Given (5/7) by (-3/4)

(5/7) × (-3/4) = (-15/28)

(iii) Given (-2/9) by (5/11)

(-2/9) × (5/11) = (-10/99)

(iv) Given (-3/13) by (-5/-4)

(-3/13) × (-5/-4) = (-15/68)

2. Multiply:

(i) (-5/17) by (51/-60)

(ii) (-6/11) by (-55/36)

(iii) (-8/25) by (-5/16)

(iv) (6/7) by (-49/36)

Solution:

(i) Given (-5/17) by (51/-60)

(-5/17) × (51/-60) = (-225/- 1020)

= (225/1020)

= (1/4)

(ii) Given (-6/11) by (-55/36)

(-6/11) × (-55/36) = (330/ 396)

= (5/6)

(iii) Given (-8/25) by (-5/16)

(-8/25) × (-5/16) = (40/400)

= (1/10)

(iv) Given (6/7) by (-49/36)

(6/7) × (-49/36) = (-294/252)

= (-7/6)

3. Simplify each of the following and express the result as a rational number in standard form:

(i) (-16/21) × (14/5)

(ii) (7/6) × (-3/28)

(iii) (-19/36) × 16

(iv) (-13/9) × (27/-26)

Solution:

(i) Given (-16/21) × (14/5)

(-16/21) × (14/5) = (224/105)

= (-32/15)

(ii) Given (7/6) × (-3/28)

(7/6) × (-3/28) = (-21/168)

= (-1/8)

(iii) Given (-19/36) × 16

(-19/36) × 16 = (-304/36)

= (-76/9)

(iv) Given (-13/9) × (27/-26)

(-13/9) × (27/-26) = (-351/234)

= (3/2)

4. Simplify:

(i) (-5 × (2/15)) – (-6 × (2/9))

(ii) ((-9/4) × (5/3)) + ((13/2) × (5/6))

Solution:

(i) Given (-5 × (2/15)) – (-6 × (2/9))

(-5 × (2/15)) – (-6 × (2/9)) = (-10/15) – (-12/9)

= (-2/3) + (12/9)

= (-6/9) + (12/9)

= (6/9)

= (2/3)

(ii) Given ((-9/4) × (5/3)) + ((13/2) × (5/6))

((-9/4) × (5/3)) + ((13/2) × (5/6)) = ((-3/4) × 5) + ((13/2) × (5/6))

= (-15/4) + (65/12)

= (-15/4) × (3/3) + (65/12)

= (-45/12) + (65/12)

= (65 – 45)/12

= (20/12)

= (5/3)

5. Simplify:

(i) ((13/9) × (-15/2)) + ((7/3) × (8/5)) + ((3/5) × (1/2))

(ii) ((3/11) × (5/6)) – ((9/12) × ((4/3)) + ((5/13) × (6/15))

Solution:

(i) Given ((13/9) × (-15/2)) + ((7/3) × (8/5)) + ((3/5) × (1/2))

((13/9) × (-15/2)) + ((7/3) × (8/5)) + ((3/5) × (1/2)) = (-195/18) + (56/15) + (3/10)

= (-65/6) + (56/15) + (3/10)

= (-65/6) × (5/5) + (56/15) × (2/2) + (3/10) × (3/3).

= (-325/30) + (112/30) + (9/30)

= (-325 + 112 + 9)/30

= (-204/30)

= (-34/5)

(ii) Given ((3/11) × (5/6)) – ((9/12) × ((4/3)) + ((5/13) × (6/15))

((3/11) × (5/6)) – ((9/12) × ((4/3)) + ((5/13) × (6/15)) = (15/66) – (36/36) + (30/195)

= (5/22) – (12/12) + (1/11)

= (5/22) – 1 + (2/13)

= (5/22) × (13/13) + (1/1) × (286/286) + (2/13) × (22/22)

= (65/286) – (286/286) + (44/286)

= (-177/286)


Exercise 5.4 Page No: 5.13

1. Divide:

(i) 1 by (1/2)

(ii) 5 by (-5/7)

(iii) (-3/4) by (9/-16)

(iv) (-7/8) by (-21/16)

(v) (7/-4) by (63/64)

(vi) 0 by (-7/5)

(vii) (-3/4) by -6

(viii) (2/3) by (-7/12)

Solution:

(i) Given 1 by (1/2)

1 ÷ (1/2) = 1 × 2 = 2

(ii) Given 5 by (-5/7)

5 ÷ (-5/7) = 5 × (-7/5)

= -7

(iii) Given (-3/4) by (9/-16)

(-3/4) ÷ (9/-16) = (-3/4) × (-16/9)

= (-4/-3)

= (4/3)

(iv) Given (-7/8) by (-21/16)

(-7/8) ÷ (-21/16) = (-7/8) × (16/-21)

= (-2/-3)

= (2/3)

(v) Given (7/-4) by (63/64)

(7/-4) ÷ (63/64) = (7/-4) × (64/63)

= (-16/9)

(vi) Given 0 by (-7/5)

0 ÷ (-7/5) = 0 × (5/7)

= 0

(vii) Given (-3/4) by -6

(-3/4) ÷ -6 = (-3/4) × (1/-6)

= (-1/-8)

= (1/8)

(viii) Given (2/3) by (-7/12)

(2/3) ÷ (-7/12) = (2/3) × (12/-7)

= (8/-7)

2. Find the value and express as a rational number in standard form:

(i) (2/5) ÷ (26/15)

(ii) (10/3) ÷ (-35/12)

(iii) -6 ÷ (-8/17)

(iv) (40/98) ÷ (-20)

Solution:

(i) Given (2/5) ÷ (26/15)

(2/5) ÷ (26/15) = (2/5) × (15/26)

= (3/13)

(ii) Given (10/3) ÷ (-35/12)

(10/3) ÷ (-35/12) = (10/3) × (12/-35)

= (-40/35)

= (- 8/7)

(iii) Given -6 ÷ (-8/17)

-6 ÷ (-8/17) = -6 × (17/-8)

= (102/8)

= (51/4)

(iv) Given (40/98) ÷ -20

(40/98) ÷ -20 = (40/98) × (1/-20)

= (-2/98)

= (-1/49)

3. The product of two rational numbers is 15. If one of the numbers is -10, find the other.

Solution:

Let required number be x

x × – 10 = 15

x = (15/-10)

x = (3/-2)

x = (-3/2)

Hence the number is (-3/2)

4. The product of two rational numbers is (- 8/9). If one of the numbers is (- 4/15), find the other.

Solution:

Given product of two numbers = (-8/9)

One of them is (-4/15)

Let the required number be x

x × (-4/15) = (-8/9)

x = (-8/9) ÷ (-4/15)

x = (-8/9) × (15/-4)

x = (-120/-36)

x = (10/3)

5. By what number should we multiply (-1/6) so that the product may be (-23/9)?

Solution:

Given product = (-23/9)

One number is (-1/6)

Let the required number be x

x × (-1/6) = (-23/9)

x = (-23/9) ÷ (-1/6)

x = (-23/9) × (-6/1)

x = (-138/9)

x = (46/3)

6. By what number should we multiply (-15/28) so that the product may be (-5/7)?

Solution:

Given product = (-5/7)

One number is (-15/28)

Let the required number be x

x × (-15/28) = (-5/7)

x = (-5/7) ÷ (-15/28)

x = (-5/7) × (28/-15)

x = (-4/-3)

x = (4/3)

7. By what number should we multiply (-8/13) so that the product may be 24?

Solution:

Given product = 24

One of the number is = (-8/13)

Let the required number be x

x × (-8/13) = 24

x = 24 ÷ (-8/13)

x = 24 × (13/-8)

x = -39

8. By what number should (-3/4) be multiplied in order to produce (-2/3)?

Solution:

Given product = (-2/3)

One of the number is = (-3/4)

Let the required number be x

x × (-3/4) = (-2/3)

x = (-2/3) ÷ (-3/4)

x = (-2/3) × (4/-3)

x = (-8/-9)

x = (8/9)

9. Find (x + y) ÷ (x – y), if

(i) x = (2/3), y = (3/2)

(ii) x = (2/5), y = (1/2)

(iii) x = (5/4), y = (-1/3)

Solution:

(i) Given x = (2/3), y = (3/2)

(x + y) ÷ (x – y) = ((2/3) + (3/2)) ÷ ((2/3) – (3/2))

= (4 + 9)/6 ÷ (4 – 9)/6

= (4 + 9)/6 × (6/ (4 – 9)

= (4 + 9)/ (4 -9)

= (13/-5)

(ii) Given x = (2/5), y = (1/2)

(x + y) ÷ (x – y) = ((2/5) + (1/2)) ÷ ((2/5) – (1/2))

= (4 + 5)/10 ÷ (4 -5)/10

= (4 + 5)/10 × (10/ (4 – 5)

= (4 + 5)/ (4 -5)

= (9/-1)

(iii) Given x = (5/4), y = (-1/3)

(x + y) ÷ (x – y) = ((5/4) + (-1/3)) ÷ ((5/4) – (-1/3))

= (15 – 4)/12 ÷ (15 + 4)/12

= (15 – 4)/12 × (12/ (15 + 4)

= (15 – 4)/ (15 + 4)

= (11/19)

10. The cost of 7 (2/3) meters of rope is Rs. 12 (3/4). Find its cost per meter.

Solution:

Given cost of 7 (2/3) = (23/3) meters of rope is Rs. 12 (3/4) = (51/4)

Cost per meter = (51/4) ÷ (23/3)

= (51/4) × (3/23)

= (153/92)

= Rs 1 (61/92)

11. The cost of 2 (1/3) meters of cloth is Rs.75 (1/4). Find the cost of cloth per meter.

Solution:

Given cost of 2(1/3) metres of rope = Rs. 75 (1/4)

Cost of cloth per meter = 75 (1/4) ÷ 2 (1/3)

= (301/4) ÷ (7/3)

= (301/4) × (3/7)

= (129/4)

= Rs 32 (1/4)

12. By what number should (-33/16) be divided to get (-11/4)?

Solution:

Let the required number be x

(-33/16) ÷ x = (-11/4)

x = (-33/16) ÷ (-11/4)

x = (-33/16) × (4/-11)

x = (3/4)

13. Divide the sum of (-13/5) and (12/7) by the product of (-31/7) and (-1/2)

Solution:

Given

((-13/5) + (12/7)) ÷ (-31/7) x (-1/2)

= ((-13/5) × (7/7) + (12/7) × (5/5)) ÷ (31/14)

= ((-91/35) + (60/35)) ÷ (31/14)

= (-31/35) ÷ (31/14)

= (-31/35) × (14/31)

= (-14/35)

= (-2/5)

14. Divide the sum of (65/12) and (8/3) by their difference.

Solution:

((65/12) + (8/3)) ÷ ((65/12) – (8/3))

= ((65/12) + (32/12)) ÷ ((65/12) – (32/12))

= (65 + 32)/12 ÷ (65 -32)/12

= (65 + 32)/12 × (12/ (65 – 32)

= (65 + 32)/ (65 – 32)

= (97/33)

15. If 24 trousers of equal size can be prepared in 54 metres of cloth, what length of cloth is required for each trouser?

Solution:

Given material required for 24 trousers = 54m

Cloth required for 1 trouser = (54/24)

= (9/4) meters


Exercise 5.5 Page No: 5.16

1. Find six rational numbers between (-4/8) and (3/8)

Solution:

We know that between -4 and -8, below mentioned numbers will lie

-3, -2, -1, 0, 1, 2.

According to definition of rational numbers are in the form of (p/q) where q not equal to zero.

Therefore six rational numbers between (-4/8) and (3/8) are

(-3/8), (-2/8), (-1/8), (0/8), (1/8), (2/8), (3/8)

2. Find 10 rational numbers between (7/13) and (- 4/13)

Solution:

We know that between 7 and -4, below mentioned numbers will lie

-3, -2, -1, 0, 1, 2, 3, 4, 5, 6.

According to definition of rational numbers are in the form of (p/q) where q not equal to zero.

Therefore six rational numbers between (7/13) and (-4/13) are

(-3/13), (-2/13), (-1/13), (0/13), (1/13), (2/13), (3/13), (4/13), (5/13), (6/13)

3. State true or false:

(i) Between any two distinct integers there is always an integer.

(ii) Between any two distinct rational numbers there is always a rational number.

(iii) Between any two distinct rational numbers there are infinitely many rational numbers.

Solution:

(i) False

Explanation:

Between any two distinct integers not necessary to be one integer.

(ii) True

Explanation:

According to the properties of rational numbers between any two distinct rational numbers there is always a rational number.

(iii) True

Explanation:

According to the properties of rational numbers between any two distinct rational numbers there are infinitely many rational numbers.

Comments

Popular posts from this blog

RD Sharma Solutions For Class 7 Chapter 24 – Data Handling – III (Constructions of Bar graphs)

  RD Sharma Solutions For Class 7 Chapter 24 – Data Handling – III (Constructions of Bar graphs) 1. Two hundred students of class VI and VII were asked to name their favorite colours so as to decide upon what should be the colour of their school house. The results are shown in the following table. Colour: Red Green Blue Yellow Orange Number of Students 43 19 55 49 34 Represent the given data on a bar graph. (i) Which is the most preferred colour and which is the least? (ii) How many colours are there in all? Solution: Steps of constructing bar graph: 1. Mark the horizontal axis OX as Name of the Colour and the vertical axis OY as Number of Students. 2. Along the horizontal axis OX, choose bars of uniform (equal) width, with a uniform gap between them. 3. Choose a suitable scale to determine the heights of the bars, according to the space available for the graph. Here, we choose 1 small division to represent 10 students. (i) The most preferred colour is blue and the least preferred ...

NCERT Solutions for Class 6 Chapter 14: Practical Geometry

  NCERT Solutions for Class 6 Chapter 14: Practical Geometry Exercise 14.1 page no: 276 1. Draw a circle of radius 3.2 cm. Solutions: The required circle may be drawn as follows: Step 1: For the required radius 3.2 cm, first open the compasses. Step 2: For the centre of a circle, mark a point ‘O’. Step 3: Place a pointer of compasses on ‘O’. Step 4: Now, turn the compasses slowly to draw the required circle. 2. With the same centre O, draw two circles of radii 4 cm and 2.5 cm. Solutions: The required circle may be drawn as follows: Step 1: For the required radius 4 cm, first open the compasses Step 2: For the centre of a circle, mark a point ‘O’ Step 3: Place a pointer of compasses on ‘O’. Step 4: Turn the compasses slowly to draw the circle. Step 5: Next, open the compasses for 2.5 cm. Step 6: Again place a pointer of compasses on ‘O’ and turn the compasses slowly to draw the circle. 3. Draw a circle and any two of its diameters. If you join the ends of these diameters, what is th...