Skip to main content

RD Sharma Solutions For Class 10 Chapter 6 – Trigonometric Identities

 

RD Sharma Solutions For Class 10 Chapter 6 – Trigonometric Identities

RD Sharma Class 10 Chapter 6 Exercise 6.1 Page No: 6.43

Prove the following trigonometric identities:

1. (1 – cos2 A) cosec2 A = 1

Solution:

Taking the L.H.S,

(1 – cos2 A) cosec2 A

= (sin2 A) cosec2 A [∵ sin2 A + cosA = 1 ⇒1 – sin2 A = cos2 A]

= 12

= 1 = R.H.S

– Hence Proved

2. (1 + cot2 A) sin2 A = 1 

Solution: 

By using the identity,

cosecA – cot2 A = 1 ⇒ cosecA = cot2 A + 1

Taking,

L.H.S = (1 + cot2 A) sin2 A

= cosec2 A sin2 A

= (cosec A sin A)2

= ((1/sin A) × sin A)2

= (1)2

= 1

= R.H.S

– Hence Proved

3. tanθ cosθ = 1 − cosθ 

Solution: 

We know that,

sinθ + cosθ = 1

Taking,

L.H.S = tanθ cosθ

= (tan θ × cos θ)2

= (sin θ)2

= sinθ

= 1 – cosθ

= R.H.S

– Hence Proved

4. cosec θ √(1 – cos2 θ) = 1

Solution:

Using identity,

sinθ + cosθ = 1  ⇒ sinθ = 1 – cosθ

Taking L.H.S,

L.H.S = cosec θ √(1 – cos2 θ)

= cosec θ √( sinθ)

= cosec θ x sin θ

= 1

= R.H.S

– Hence Proved

5. (secθ − 1)(cosecθ − 1) = 1 

Solution:

Using identities,

(secθ − tanθ) = 1 and (cosecθ − cotθ) = 1

We have,

L.H.S = (secθ – 1)(cosec2θ – 1)

= tan2θ × cot2θ

= (tan θ × cot θ)2

= (tan θ × 1/tan θ)2

= 12

= 1

= R.H.S

– Hence Proved

6. tan θ + 1/ tan θ = sec θ cosec θ

Solution:

We have,

L.H.S = tan θ + 1/ tan θ

= (tan2 θ + 1)/ tan θ

= sec2 θ / tan θ [∵ secθ − tanθ = 1]

= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]

= cos θ/ (sin θ x cos2 θ)

= 1/ cos θ x 1/ sin θ

= sec θ x cosec θ

= sec θ cosec θ

= R.H.S

– Hence Proved

7. cos θ/ (1 – sin θ) = (1 + sin θ)/ cos θ

Solution:

We know that,

sinθ + cosθ = 1

So, by multiplying both the numerator and the denominator by (1+ sin θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 1

L.H.S =

= R.H.S

– Hence Proved

8. cos θ/ (1 + sin θ) = (1 – sin θ)/ cos θ

Solution:

We know that,

sinθ + cosθ = 1

So, by multiplying both the numerator and the denominator by (1- sin θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 2

L.H.S =

= R.H.S

– Hence Proved

9. cosθ + 1/(1 + cotθ) = 1

Solution:

We already know that,

cosecθ − cotθ = 1 and sinθ + cosθ = 1

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 3

= cos2 A + sin2 A

= 1

= R.H.S

– Hence Proved

10. sinA + 1/(1 + tan A) = 1

Solution:

We already know that,

secθ − tanθ = 1 and sinθ + cosθ = 1

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 4

= sin2 A + cos2 A

= 1

= R.H.S

– Hence Proved

11.
R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 5

Solution:

We know that, sinθ + cosθ = 1

Taking the L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 6

= R.H.S

– Hence Proved

12. 1 – cos θ/ sin θ = sin θ/ 1 + cos θ

Solution:

We know that,

sinθ + cosθ = 1

So, by multiplying both the numerator and the denominator by (1+ cos θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 7

= R.H.S

– Hence Proved

13. sin θ/ (1 – cos θ) = cosec θ + cot θ

Solution:

 

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 8

= cosec θ + cot θ

= R.H.S

– Hence Proved

14. (1 – sin θ) / (1 + sin θ) = (sec θ – tan θ)2

Solution:

Taking the L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 9

= (sec θ – tan θ)2

= R.H.S

– Hence Proved

15. R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 10

Solution:

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 11

= cot θ

= R.H.S

– Hence Proved

16. tanθ − sinθ = tanθ sinθ 

Solution:

Taking L.H.S,

L.H.S = tanθ − sinθ 

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 12

= tanθ sinθ

= R.H.S

– Hence Proved

17. (cosec θ + sin θ)(cosec θ – sin θ) = cot2θ + cos2θ 

Solution:

Taking L.H.S = (cosec θ + sin θ)(cosec θ – sin θ)

On multiplying we get,

= cosec2 θ – sin2 θ

= (1 + cot2 θ) – (1 – cos2 θ) [Using cosecθ − cotθ = 1 and sinθ + cosθ = 1]

= 1 + cot2 θ – 1 + cos2 θ

= cot2 θ + cos2 θ

= R.H.S

– Hence Proved

18. (sec θ + cos θ) (sec θ – cos θ) = tanθ + sinθ 

Solution:

Taking L.H.S = (sec θ + cos θ)(sec θ – cos θ)

On multiplying we get,

= sec2 θ – sin2 θ

= (1 + tan2 θ) – (1 – sin2 θ) [Using secθ − tanθ = 1 and sinθ + cosθ = 1]

= 1 + tan2 θ – 1 + sin2 θ

= tan θ + sin 2 θ

= R.H.S

– Hence Proved

19. sec A(1- sin A) (sec A + tan A) = 1

Solution:

Taking L.H.S = sec A(1 – sin A)(sec A + tan A)

Substituting sec A = 1/cos A and tan A =sin A/cos A in the above we have,

L.H.S = 1/cos A (1 – sin A)(1/cos A + sin A/cos A)

= 1 – sin2 A / cos2 A [After taking L.C.M]

= cos2 A / cos2 A [∵ 1 – sin2 A = cos2 A]

= 1

= R.H.S

– Hence Proved

20. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1 

Solution:

Taking L.H.S = (cosec A – sin A)(sec A – cos A)(tan A + cot A)

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 13

= (cos2 A/ sin A) (sin2 A/ cos A) (1/ sin A cos A) [∵ sinθ + cosθ = 1]

= sin A x cos A x (1/ cos A sin A)

= R.H.S

– Hence Proved

21. (1 + tanθ)(1 – sin θ)(1 + sin θ) = 1

Solution:

Taking L.H.S = (1 + tan2θ)(1 – sin θ)(1 + sin θ)

And, we know sin2 θ + cos2 θ = 1 and sec2 θ – tan2 θ = 1

So,

L.H.S = (1 + tan2 θ)(1 – sin θ)(1 + sin θ)

= (1 + tanθ){(1 – sin θ)(1 + sin θ)}

= (1 + tanθ)(1 – sinθ)

= secθ (cos2 θ)

= (1/ cos2 θ) x cos2 θ

= 1

= R.H.S

– Hence Proved

22. sinA cotA + cosA tanA = 1

Solution:

We know that,

cotA = cosA/ sin2 A and tan2 A = sin2 A/cos2 A

Substituting the above in L.H.S, we get

L.H.S = sinA cotA + cosA tanA

= {sinA (cosA/ sin2 A)} + {cosA (sin2 A/cos2 A)}

= cosA + sin2 A

= 1 [∵ sinθ + cosθ = 1]

= R.H.S

– Hence Proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 14

23.

Solution:

(i) Taking the L.H.S and using sinθ + cosθ = 1, we have

L.H.S = cot θ – tan θ

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 15

= R.H.S

– Hence Proved

(ii) Taking the L.H.S and using sinθ + cosθ = 1, we have

L.H.S = tan θ – cot θ

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 16

= R.H.S

– Hence Proved

24. (cos2 θ/ sin θ) – cosec θ + sin θ = 0

Solution:

Taking L.H.S and using sinθ + cosθ = 1, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 17

= – sin θ + sin θ

= 0

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 1825.

Solution:

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 19

= 2 sec2 A

= R.H.S

  • Hence proved

26. R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 20

Solution:

Taking the LHS and using sinθ + cosθ = 1, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 21

= 2/ cos θ

= 2 sec θ

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 22

27.

Solution:

 

Taking the LHS and using sinθ + cosθ = 1, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 23

= R.H.S

  • Hence proved

28.R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 24

Solution:

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 25

Using secθ − tanθ = 1 and cosecθ − cotθ = 1

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 26

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 32

29.

Solution:

Taking L.H.S and using sinθ + cosθ = 1, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 34
R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 33

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 35

30.

Solution:

Taking LHS, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 36

= 1 + tan θ + cot θ

= R.H.S

  • Hence proved

31. secθ = tanθ + 3 tanθ secθ + 1

Solution: 

From trig. Identities we have,

secθ − tanθ = 1

On cubing both sides,

(sec2θ − tan2θ)= 1

secθ − tanθ − 3secθ tanθ(secθ − tanθ) = 1

[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]

secθ − tanθ − 3secθ tanθ = 1

⇒ secθ = tanθ + 3secθ tanθ + 1

Hence, L.H.S = R.H.S

  • Hence proved

32. cosecθ = cotθ + 3cotθ cosecθ + 1

Solution:

From trig. Identities we have,

cosecθ − cotθ = 1

On cubing both sides,

(cosecθ − cotθ)3 = 1

cosecθ − cotθ − 3cosecθ cotθ (cosecθ − cotθ) = 1

[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]

cosecθ − cotθ − 3cosecθ cotθ = 1

⇒ cosecθ = cotθ + 3 cosecθ cotθ + 1

Hence, L.H.S = R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 3733.

Solution:

Taking L.H.S and using secθ − tanθ = 1 ⇒ 1 + tanθ = secθ

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 38

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 3934.

Solution:

Taking L.H.S and using the identity sin2A + cos2A = 1, we get

sin2A = 1 − cos2A

⇒ sin2A = (1 – cos A)(1 + cos A)

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 40

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 4135.

Solution:

We have,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 42

Rationalizing the denominator and numerator with (sec A + tan A) and using secθ − tanθ = 1 we get,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 43

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 44

36.

Solution:

We have,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 45

On multiplying numerator and denominator by (1 – cos A), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 45

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 47

37. (i)

Solution:

Taking L.H.S and rationalizing the numerator and denominator with √(1 + sin A), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 48

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 49

(ii)

Solution:

Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 50

= 2 cosec A

= R.H.S

  • Hence proved

38. Prove that:

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 51(i)

Solution:

Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 52

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 53(ii)

Solution:

Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 54

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 55(iii)

Solution:

Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get

 

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 56

= 2 cosec θ

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 57(iv)

Solution:

Taking L.H.S, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 58

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 59

39.

Solution:

 

Taking LHS = (sec A – tan A)2 , we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 60

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 61

40.

Solution:

Taking L.H.S and rationalizing the numerator and denominator with (1 – cos A), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 62

= (cosec A – cot A)2

= (cot A – cosec)2

= R.H.S

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 63

41.

Solution:

Considering L.H.S and taking L.C.M and on simplifying we have,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 64

= 2 cosec A cot A = RHS

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 65

42.

Solution:

Taking LHS, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 66

= cos A + sin A

= RHS

  • Hence proved

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 6743.

Solution:

Considering L.H.S and taking L.C.M and on simplifying we have,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 68

= 2 secA

= RHS

  • Hence proved

RD Sharma Class 10 Chapter 6 Exercise 6.2 Page No: 6.54

1. If cos θ = 4/5, find all other trigonometric ratios of angle θ. 

Solution:

 

We have,

cos θ = 4/5

And we know that,

sin θ = √(1 – cosθ)

⇒ sin θ = √(1 – (4/5)2)

= √(1 – (16/25))

= √[(25 – 16)/25]

= √(9/25)

= 3/5

∴ sin θ = 3/5

Since, cosec θ = 1/ sin θ

= 1/ (3/5)

⇒ cosec θ = 5/3

And, sec θ = 1/ cos θ

= 1/ (4/5)

⇒ cosec θ = 5/4

Now,

tan θ = sin θ/ cos θ

= (3/5)/ (4/5)

⇒ tan θ = 3/4

And, cot θ = 1/ tan θ

= 1/ (3/4)

⇒ cot θ = 4/3

2. If sin θ = 1/√2, find all other trigonometric ratios of angle θ.

Solution:

 

We have,

sin θ = 1/√2

And we know that,

cos θ = √(1 – sinθ)

⇒ cos θ = √(1 – (1/√2)2)

= √(1 – (1/2))

= √[(2 – 1)/2]

= √(1/2)

= 1/√2

∴ cos θ = 1/√2

Since, cosec θ = 1/ sin θ

= 1/ (1/√2)

⇒ cosec θ = √2

And, sec θ = 1/ cos θ

= 1/ (1/√2)

⇒ cosec θ = √2

Now,

tan θ = sin θ/ cos θ

= (1/√2)/ (1/√2)

⇒ tan θ = 1

And, cot θ = 1/ tan θ

= 1/ (1)

⇒ cot θ = 1

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 1

3.

Solution:

Given,

tan θ = 1/√2

By using secθ − tanθ = 1,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 2
R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 3

4.

Solution:

Given,

tan θ = 3/4

By using secθ − tanθ = 1,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 4

sec θ = 5/4

Since, sec θ = 1/ cos θ

⇒ cos θ = 1/ sec θ

= 1/ (5/4)

= 4/5

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 5

So,

 

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 6

5.

Solution:

Given, tan θ = 12/5

Since, cot θ = 1/ tan θ = 1/ (12/5) = 5/12

Now, by using cosecθ − cotθ = 1

cosec θ = √(1 + cotθ)

= √(1 + (5/12))

= √(1 + 25/144)

= √(169/ 25)

⇒ cosec θ = 13/5

Now, we know that

sin θ = 1/ cosec θ

= 1/ (13/5)

⇒ sin θ = 5/13

Putting value of sin θ in the expression we have,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 7

= 25/ 1

= 25

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 8

6.

Solution:

Given,

cot θ = 1/√3

Using cosecθ − cotθ = 1, we can find cosec θ

cosec θ = √(1 + cot2 θ)

= √(1 + (1/√3)2)

= √(1 + (1/3)) = √((3 + 1)/3)

= √(4/3)

⇒ cosec θ = 2/√3

So, sin θ = 1/ cosec θ = 1/ (2/√3)

⇒ sin θ = √3/2

And, we know that

cos θ = √(1 – sin2 θ)

= √(1 – (√3/2)2)

= √(1 – (3/4))

√((4 – 3)/4)

= √(1/4)

⇒ cos θ = 1/2

Now, using cos θ and sin θ in the expression, we have

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 9

= 3/5

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 10

7.

Solution:

Given,

cosec A = √2

Using cosecA − cotA = 1, we find cot A

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.2 - 11

Comments

Popular posts from this blog

RD Sharma Solutions For Class 7 Chapter 24 – Data Handling – III (Constructions of Bar graphs)

  RD Sharma Solutions For Class 7 Chapter 24 – Data Handling – III (Constructions of Bar graphs) 1. Two hundred students of class VI and VII were asked to name their favorite colours so as to decide upon what should be the colour of their school house. The results are shown in the following table. Colour: Red Green Blue Yellow Orange Number of Students 43 19 55 49 34 Represent the given data on a bar graph. (i) Which is the most preferred colour and which is the least? (ii) How many colours are there in all? Solution: Steps of constructing bar graph: 1. Mark the horizontal axis OX as Name of the Colour and the vertical axis OY as Number of Students. 2. Along the horizontal axis OX, choose bars of uniform (equal) width, with a uniform gap between them. 3. Choose a suitable scale to determine the heights of the bars, according to the space available for the graph. Here, we choose 1 small division to represent 10 students. (i) The most preferred colour is blue and the least preferred ...

NCERT Solutions for Class 6 Chapter 13: Symmetry

  NCERT Solutions for Class 6 Chapter 13: Symmetry Exercise 13.1 page no: 263 1. List any four symmetrical objects from your home or school. Solutions: The four symmetrical objects are black board, the table top, a pair of scissors, the computer disc etc. 2. For the given figure, which one is the mirror line, l 1  or l 2 ? Solutions: l 2  is the mirror line of the figure. When given figure is folded about the line l 2  the left part exactly cover the right part and vice versa 3. Identify the shapes given below. Check whether they are symmetric or not. Draw the line of symmetry as well. Solutions: (a)  Yes. It is a symmetric (b) Yes. It is a symmetric (c) No, it is not a symmetric (d) Yes. It is a symmetric (e) Yes. It is a symmetric (f) Yes. It is a symmetric The following figures given below are the line of symmetry 4. Copy the following on a squared paper. A square paper is what you would have used in your arithmetic notebook in earlier classes. Then complete ...

NCERT Solutions for Class 6 Chapter 11: Algebra

  NCERT Solutions for Class 6 Chapter 11: Algebra Exercise 11.1 Page no: 226 1. Find the rule which gives the number of matchsticks required to make the following matchsticks patterns. Use a variable to write the rule. (a) A pattern of letter T as (b) A pattern of letter Z as (c) A pattern of letter U as (d) A pattern of letter Vas (e) A pattern of letter E as (f) A pattern of letter S as (g) A pattern of letter A as Solutions: (a) From the figure we observe that two matchsticks are required to make a letter T. Hence, the pattern is 2n (b) From the figure we observe that three matchsticks are required to make a letter Z. Hence, the pattern is 3n (c) From the figure we observe that three matchsticks are required to make a letter U. Hence, the pattern is 3n (d) From the figure we observe that two matchsticks are required to make a letter V. Hence, the pattern is 2n (e) From the figure we observe that 5 matchsticks are required to make a letter E. Hence, the pattern is 5n (f) From the...